Problem 1 Suppose $f : [a, b] \to \mathbb{R}$ is integrable. Show that for any $c \in \mathbb{R}$,

$$\int_{a+c}^{b+c} f(x-c) \, dx$$

is defined (the underlying function is integrable), and

$$\int_{a+c}^{b+c} f(x-c) \, dx = \int_a^b f(x) \, dx.$$

Problem 2

Suppose $f : [a, b] \to \mathbb{R}$ is bounded and monotone increasing. Show f is integrable.

Problem 3

- 1. Show that $f: [1, a] \to \mathbb{R}$, $f(x) = \frac{1}{x}$ is integrable, for any a > 1.
- 2. Show that for any a > 1 and b > 0,

$$\int_1^a \frac{1}{t} dt = \int_b^{ab} \frac{1}{t} dt.$$

Hint: Scale an arbitrary partition $[x_0, x_1, \ldots, x_n]$ of [1, a] into the partition $[bx_0, bx_1, \ldots, bx_n]$ of [b, ab].

Problem 4

Suppose f is integrable on [a, b]. Prove that there is a number x in [a, b] such that

$$\int_{a}^{x} f = \int_{x}^{b} f.$$

Show by example that it is not always possible to choose $x \in (a, b)$ (i.e. x might have to be on the boundary).

Problem 5

Suppose f is integrable on [a, b]. Show that the function $F : [a, b] \to \mathbb{R}, x \mapsto \int_a^x f$ is continuous.

Problem 6

Suppose f is integrable on [a, b]. Prove that there is a number x in [a, b] such that

$$\int_{a}^{x} f = \int_{x}^{b} f.$$

Show by example that it is not always possible to choose $x \in (a, b)$ (i.e. x might have to be on the boundary).